Globally Optimal Tumor Segmentation in PET-CT Images: A Graph-Based Co-segmentation Method

نویسندگان

  • Dongfeng Han
  • John E. Bayouth
  • Qi Song
  • Aakant Taurani
  • Milan Sonka
  • John M. Buatti
  • Xiaodong Wu
چکیده

Tumor segmentation in PET and CT images is notoriously challenging due to the low spatial resolution in PET and low contrast in CT images. In this paper, we have proposed a general framework to use both PET and CT images simultaneously for tumor segmentation. Our method utilizes the strength of each imaging modality: the superior contrast of PET and the superior spatial resolution of CT. We formulate this problem as a Markov Random Field (MRF) based segmentation of the image pair with a regularized term that penalizes the segmentation difference between PET and CT. Our method simulates the clinical practice of delineating tumor simultaneously using both PET and CT, and is able to concurrently segment tumor from both modalities, achieving globally optimal solutions in low-order polynomial time by a single maximum flow computation. The method was evaluated on clinically relevant tumor segmentation problems. The results showed that our method can effectively make use of both PET and CT image information, yielding segmentation accuracy of 0.85 in Dice similarity coefficient and the average median hausdorff distance (HD) of 6.4 mm, which is 10% (resp., 16%) improvement compared to the graph cuts method solely using the PET (resp., CT) images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of methods of co-segmentation on PET/CT images of lung tumor: simulation study

Introduction: Lung cancer is one of the most common causes of cancer-related deaths worldwide. Nowadays PET/CT plays an essential role in radiotherapy planning specially for lung tumors as it provides anatomical and functional information simultaneously that is effective in accurate tumor delineation. The optimal segmentation method has not been introduced yet, however several ...

متن کامل

Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction

Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...

متن کامل

Contribution of 68Ga-PSMA PET/CT to targeting volume delineation of prostate cancer treated with conformal radiation therapy: Which SUV threshold is appropriate?

Introduction: Prostate-specific membrane antigen (PSMA) has been demonstrated as a promising tool for specific imaging of prostate cancer (PCa) via positron emission tomography-computed tomography (PET/CT) scanning. Radiation treatment planning (RTP) based on 68Ga-PSMA PET/CT scanning can also lead to some decision modifications.  The specific goal o...

متن کامل

Comparing 511 keV Attenuation Maps Obtained from Different Energy Mapping Methods for CT Based Attenuation Correction of PET Data

Introduction:  The  advent  of  dual-modality  PET/CT  scanners  has  revolutionized  clinical  oncology  by  improving lesion localization and facilitating treatment planning for radiotherapy. In addition, the use of  CT images for CT-based attenuation correction (CTAC) decreases the overall scanning time and creates  a noise-free  attenuation  map  (6map).  CTAC  methods  include  scaling,  s...

متن کامل

Globally optimal image segmentation incorporating region, shape prior and context information

Accurate image segmentation is a challenging problem in the presence of weak boundary evidence, large object deformation, and serious mutual influence between multiple objects. In this thesis, we propose novel approaches to multi-object segmentation, which incorporates region, shape and context prior information to help overcome the stated challenges. The methods are based on a 3-D graph-theore...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Information processing in medical imaging : proceedings of the ... conference

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2011